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Abstract

Infrared spectroscopy is an important technique for measuring airborne chemicals, for pollution monitoring
and to warn of toxic compound releases. Infrared spectroscopy provides both detection and identification of
airborne components. Computer-assisted classification tools, including pattern recognition and artificial
neural network techniques, have been applied to a collection of infrared spectra of organophosphorus
compounds, and these have successfully discriminated commercial pesticide compounds from military
nerve agents, precursors, and hydrolysis products. Infrared spectra for previous tests came from a
commercial infrared library, with permission, from military laboratories, and from defense contractors. In
order to further test such classification tools, additional infrared spectra from the NIST gas-phase infrared
library were added to the data set. These additional spectra probed the tendency of the trained classifiers to
misidentify unrelated spectra into the trained classes.

Infrared spectra used in this effort were gathered from a variety of sources. Different instrument operators
collected them at a number of locations, in a variety of spectral data collection designs, and they were
delivered in a variety of digital formats. The spectra were treated mathematically to remove artifacts from
their collection. Preprocessing techniques used included Fisher weighting and principal component
analysis. Classifications were made using the k-nearest neighbor classifier, feed forward neural networks,
trained with a variety of techniques, and radial basis function networks. The results from these
classification techniques will be reported and compared.

Keywords

Infrared Spectroscopy Chemometrics Classification Pattern Recognition Artificial Neural
Networks Radial Basis Function Networks Organophosphorus Compounds Pesticides

Introduction
Infrared spectroscopy is a valuable technique for providing structural information, compound identification,
and quantitative information for a wide variety of organic and inorganic chemicals and mixtures. The
absorption of infrared radiation is controlled by vibrational energy levels within molecules, thus providing
the structural information associated with the technique. Molecular vibrations that alter a molecule's dipole
moment give rise to vibrational energy levels. Infrared spectrometers are widely available in laboratories
and as ruggedized industrial instruments. Field portable infrared spectrometers based on dispersive optics
or on Fourier transform principles are becoming available for conducting remote environmental, forensic,
and industrial investigations.1

3

International efforts to control the proliferation of chemical weapons have resulted in the adoption of the
Chemical Warfare Convention (CWC) by the international community. This convention specifically bans
production and stockpiling of a number of chemicals that have been used or proposed as chemical warfare
agents due to exceptional toxicity toward humans. The convention provides for the possibility of on-site



inspection of military and industrial sites to ensure banned materials are not being stockpiled or produced.
Inspectors carrying out these duties will need portable chemical analysis equipment that can identify
banned materials present in process, product, and waste samples.4

Several of the banned chemicals in the CWC are organophosphorus neurotoxins that are closely related to
organophosphorus pesticides. Both the banned neurotoxins and the commercial organophosphorus
pesticides attack their victim's nervous system by attacking the enzyme acetylcholinesterase. The loss of
this enzyme interferes with the regulation of the neurotransmitter, acetylcholine, producing muscle spasms,
paralysis, etc.. The organophosphorus pesticides remain valuable in commercial pesticide applications
because of their rapid and easy hydrolysis in the environment, which prevents buildup of active pesticide
and residues in the environment. 5

Infrared spectroscopy is now a highly mature technique that ensures highly reproducible spectra even
between laboratories and among a variety of instruments. This allows the spectra of pure substances to be
conveniently collected in libraries to support qualitative and quantitative analyses. Large infrared spectrum
collections have been useful in supporting computerized spectral classification experiments based on
statistical pattern recognition techniques and artificial neural networks. The reproducibility of infrared
spectra between instruments and laboratories has also facilitated sharing spectral results between
laboratories. The need to facilitate the exchange of spectral information of all types between workers
prompted the development of the JCAMP format for exchanging digital spectral data. JCAMP files are
written in an ASCII text form with labeled sections to transmit spectral information, machine conditions,
etc. in a format that can be accepted by any computer using the ASCII code for character-based
information.6

Jus and Isenhour attempted to classify infrared spectra in early efforts to utilize the linear learning machine
(LLM) technique to apply pattern recognition techniques to chemical data.7 Numerous other discrete
category classification techniques have been applied to infrared pattern recognition experiments, including
k-nearest neighbor (KNN) method and SIMCA (Soft Isostructural Modeling for Class Analysis), and
various forms of discriminant analysis. Principal component analysis (PCA) is commonly used to simplify
and pretreat infrared spectra.8,9 Single component samples and two- or three- component mixtures can
usually be analyzed quantitatively with simple Beer's Law calculations. Quantitative analysis of more
complicated mixtures may require simple linear algebra calculations based on Beer's Law, or more
complicated chemometric deconvolution procedures, such as classical least squares (CLS) or partial least
squares (PLS).10

Artificial neural networks (ANNs) are a set of emerging multivariate analysis tools with both qualitative
and quantitative applications. These networks pass data from a multivariate input vector through one or
more multivariate "layers" to an output layer. An illustration of an ANN is shown in Figure 1. The central
layer of the network is termed a "hidden" layer because it is not evident from the standpoint of the input
data or the results. Circles in Figure 1 represent data items or "nodes". The lines in the diagram represent
the flow of data between layers and nodes. The input layer is identical with the input data vector of
chemometric terminology, and the circles in the layer thus represent the elements of the input data vector.
Circles in the hidden layer and output layer represent nodes or "neurons". A hidden layer node is
formulated as shown in Equation 1. Here m is the number of input nodes, Nj is the value of node j, xi is the
value of input node i, wi is the value of corresponding weight, bi is the bias of the node, and fj is known as
the transfer function. Typical transfer functions used in classification problems include the log-sigmoid
function, the tan-sigmoid function, or linear functions. These transfer functions are shown in Equations 2
- 4 respectively. The log-sigmoid function varies from 0 to 1 over a range of -- to +-. The tan-sigmoid
function varies from -1 to +1 over the range of -- to +-. Nodes in the output layer can be formulated
similarly, except xi for an output layer node is the value of node i in the hidden layer. '1 2

m

Nj = f,(Ywi•Wx +bi) (1)

1
f(x) - (2)

l+e-x



f(x) = -2 (3)

f (x)= x (4)

Input Layer Hidden Layer Output Layer
Figure 1. Diagram of an ANN. Circles represent nodes or neurons and lines represent data paths.

For classification problems, it is customary to formulate the output layer with a number of nodes equal to
the number of classes under consideration. Each class is assigned a node in the output layer, and a data
vector in a given class is represented with the value of 1.0 in the appropriate output node. 13 The challenge
in using ANNs lies in setting the values of the weights and biases. Various optimization strategies can be
applied to determining the optimum set of weights and biases for an ANN to ensure proper results. A
commonly used general strategy is termed "back propagation". Here an initial set of weights and biases,
usually set at random, are placed in the network and the network is presented with a set of input data and
their associated correct classifications. Error signals obtained by comparison of the output layer with the
correct output values are propagated back through the network and are used to adapt the weights and biases
in order to improve the network performance. The process continues in an iterative fashion with the
intention of improving the performance with each pass through the data set, hence the term "training". The
details of this process give rise to a variety of training techniques. 1,12



Neural network calculations for this work were carried out with the MATLAB® (Mathworks, Inc.) matrix
mathematics package, supplemented by the Neural Network Toolbox. Several ANN training techniques
were provided in this package, as well as routines for setting up the networks, initializing them, and
evaluating them. Three training techniques selected include the gradient descent algorithm, the robust
backpropagation algorithm, and the Levenberg-Marquardt algorithm. These techniques vary in speed of
optimization, ability to determine a global optimum set of weights versus the tendency to be trapped in a
local error minimum, and their use of computer memory. The gradient descent algorithm (GDA) has been
used in a number of past chemometric evaluations' 3 but it suffers from slow optimization and a tendency to
be trapped by local error minima. Additional details have been given by Rumelhart, et al..14 The robust
backpropagation technique (RPROP) usually exhibits improved optimization speed and less tendency to be
trapped by local error minima. Additional details on the RPROP algorithm have been given by Reidmiller'5
and Braun. The Levenberg-Marquardt algorithm is based on the optimization techniques of the same
name and utilizes the Jacobian matrix to establish weight and bias corrections. Additional details on the
Levenberg-Marquardt algorithm have been given by Hagan and Menhaj.16

Radial basis function (RBF) networks are conceptually similar to ANNs but there are some differences in
the formulation of nodes and in the method of training the networks. The schematic given in Figure 1 is
still valid for RBF networks. Each node is formulated as shown in Equation 5, where Nj is node j, R is a

radial basis transfer function, X- Wj1 is the Euclidean vector norm of the difference between the vector

of input nodes x and a weight vector wj, and bj is the bias for the node. The transfer function typically is a
Gaussian function, as shown in Equation 6, and it varies from 0 to 1 over a range of + -o to - -, with a
maximum value of I atX= .

Nj = R( x- wj 1 x bj) (5)

R(x) = e-x2 (6)

Radial basis functions are built by evaluating the network as new data vectors are presented. A new hidden
layer node, or "center" is added when the evaluation of a new data vector produces output that causes the
mean square error (MSE) value of the network to exceed a preset error goal. The weights and biases of the
new node are mathematically determined, so that the network performs within the error goal with the new
data vector included. Radial basis functions are often used for curve fitting and interpolation applications,
and the output nodes produce real number values. For classification problems, the output layer can be
spanned with node values from 0 to I and the product nodes can be rounded to the nearest integer.

The transfer functions are plotted over a limited domain in Figure 2. The log-sigmoid transfer function is
plotted in Figure 2.a. This function concentrates numerical information from the entire real-number domain
into the region between zero and one. The tan-sigmoid transfer function is plotted in Figure 2.b. This
function is similar in shape to the tan-sigmoid function but its generated values range between +1 and -1.
The linear transfer function, plotted in Figure 2.c transfers numerical values directly. The radial basis
transfer function, plotted in Figure 2.d is radically different and this causes radial basis function neural
network functions to behave differently from feed-forward networks. The radial basis transfer function
produces the mathematical analog of a neuron that responds only to data within a restricted range. Input
values far from zero, i.e. the center of the data domain, produce small response values form the function,
while large output values result only from inputs very close to zero. As a result of this, radial basis
function neurons tend to respond only to input data very close to a specific input pattern.



Figure 2. Neural network transfer functions. (a) Log-sigmoid function. (b) Tan-sigmoid
function. (c) Linear function. (d) Radial basis transfer function.
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Experimental
No infrared spectra were measured for these experiments. Mid-infrared absorption spectra were obtained
as digital computer files from a variety of sources. Sadtler, Inc. provided condensed phase spectra of 48
pesticides and commercial organophosphorus chemicals. The US Army, military contractors, and other
government organizations provided condensed phase and vapor phase spectra of a number of banned
neurotoxins, their precursors, their hydrolysis products, and some commonly used simulants. These spectra
were delivered in a variety of digital file formats, including simple X,Y ASCII files, spectra in a specific
US Army format, JCAMP files, and files in proprietary GRAMS® (Galactic, Inc) and Nicolet formats.
Some additional spectra were used from the NIST Gas Phase Infrared Library, which had been obtained in
its optional JCAMP format.18 In this option, the library is delivered as two JCAMP-formatted files,
representing two spectral collections, one made by a contractor of the US-EPA and the other collected by
NIST. The spectra used were translated into a common ASCII format which stored the chemical name and
limited information regarding its source, and then stored the spectral observation points as X,Y pairs
representing wavenumber and absorbance.

For the classification experiments, class 1 was chosen to represent 67 spectra of the banned neurotoxins,
their precursors, hydrolysis products, and simulants. All class 1 compounds contained phosphorus, as non-
organophosphorus substances were deleted from the study. The simulants were substances such as
dimethylmethylphosphonate (DMMP) and diisopropylmethylphosphonate (DIMP) which are commonly
used to test and demonstrate chemical warfare detection devices under benign conditions. Class 2 was
chosen to represent the 48 organophosphorus pesticide spectra. Class 3 was chosen to represent



compounds not belonging to either class I or class 2. The training set spectra for class 3 were the first 100
spectra from the NIST library JCAMP file, JCAMP.EPA. The class 3 training set spectra all represented
substances that contained no phosphorus.

Initial classification experiments considered only the 115 spectra in classes 1 and 2. The available spectra
were examined to determine the frequency range available in the spectra with the most restricted frequency
range. A number of spectra in class 1 were found to have been stored in the frequency range from 650 to
2500 cm', which was the most restricted frequency range. When preparing the spectra for the
classification experiments, all spectra were "trimmed" by disregarding data outside this range. In order to
further reduce artifacts relating the spectra to their various sources, it was found to be necessary to
normalize the absorbance to the range of 0 to 1. The spectra thus prepared would not encode data
necessary for quantitative estimates, but this loss did not interfere with the classification process. Each
trimmed and normalized spectrum was transduced into a data vector by dividing the frequency range, from
650 to 2500 cm' into a number of equal width "bins" and averaging the absorbance values within each bin
to generate the corresponding element of the data vector.

The number of spectra available for the class I and 2 compounds did not permit a subset to be removed and
submitted as a test/evaluation set. Additional spectra could not be obtained beyond those used in the
training set. Test/evaluation set spectra were partially synthesized by calculating a set of noise for each
spectrum, using an infrared spectral noise model developed by Schuchardt.1 9 The noise degraded spectra
were trimmed, normalized, and transduced in the same manner as the training set spectra to produce
test/evaluation data vectors for classes 1 and 2.

Feature selection was made by calculating Fisher weights for the data set in the manner described by
Sharaf, et al., 8 and removing those features whose weights were less than threshold values. Various
thresholds were used to investigate the effect of the feature removal on the classification accuracy.

Chemometric calculations were carried out on a personal computer running the MATLAB matrix
mathmatics package, (version 5.3) supplemented with the Neural Network Toolbox (version 3.0.1) and
Statistics Toolbox (version 2.2) for MATLAB (The Mathworks, Inc.). The personal computer (Micron,
Inc) was equipped with a Pentium-II® microprocessor and 64 Mbytes of RAM. Software ran under the
Windows-NT operating system, version 4.0 (Microsoft, Inc.). Locally developed m-files controlled the
MATLAB calculations.

Figure 3. DIMP Spectrum (a) before and (b) after being degraded with added noise.

(a) DIMP, Original Trimmed and

Normalized Spectrum

"(b)
DIMP, Noise Degraded•,"'sSpectrumS



Results

Figure 3.a shows the spectrum of DIMP, normalized to the absorbance range of 0 to 1, and trimmed to the
frequency range of 650 - 2500 cml. A noise-degraded spectrum produced by adding noise to the DIMP
spectrum is shown in Figure 3.b. Two-class training and test/evaluation sets were generated by "binning"
the 115 class-1 and class-2 original spectra and the 115 noise-degraded spectra into data four sets with 200,
100, 50, and 25 equal-width bins spanning the selected frequency range of 650-2500 cm-'. The resulting
bins had widths of 9.25 cm'", 18.5 cm', 37 cm', and 74 cm' respectively. The EPA vapor phase data set
from the NIST library was also binned into a 25-bin data set over the same frequency range.

Initially, classification trials were made using the class 1 and class 2 spectra only, using data vectors binned
from both the training set spectra and the noise-degraded test/evaluation set spectra. A principal
component plot of this data set is shown in Figure 4. Trials using the k-nearest neighbor classifier (KNN)
were not found to be sensitive to the voting committee size, k. Results using 3-nearest neighbors were
typical, and they are summarized in Table 1. From the misclassifications detailed in Table 1, it appears that
the optimum KNN classifications appear to come from the 100-bin data set, but the results are not overly
sensitive to the bin-width, so that classifications from the 50-bin and 25-bin data sets are nearly as accurate.
Calculating and applying Fisher weights produced a slight reduction in the numbers of misclassifications.
Figure 5 shows a plot of the Fisher weight by bin number, as well as a plot of the average feature intensity..
The KNN results did not improve significantly when feature subsets were selected on the basis of their
Fisher weights, although the errors did redistribute themselves between the classes.

Figure 4. Principal components plot of 100-bin, 2-class data set with Fisher weights applied.
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Table 1. Misclassification frequencies from 3-nearest neighbor classification, 2-class data set.

Data Set 3-NN, Raw Data Fisher Weighted Data Fisher Weights >3
200-bin 0.100 0.057 0.052
100-bin 0.083 0.057 0.061
50-bin 0.096 0.061 0.065
25-bin 0.070 0.061 0.065



Artificial neural networks were constructed and tested with routines in the MATLAB Neural Network
Toolbox. ANNs to distinguish the class 1 and class 2 vectors were constructed with a single hidden layer,
and a two-node output layer. Tan-sigmoid transfer functions were used for the input layer and hidden
layer, and linear transfer functions were used for the output layer. Preliminary trials showed that five
neurons in the hidden layer gave usable networks, and performance was similar using more or fewer hidden
layer nodes. ANNs were trained to produce a set of integer output layer nodes with the pattern of [1 0] for
class 1 data vectors and [0 1] for class 2 data vectors. The ANNs were trained to mean square error values
of less than 103 , and for the final classification, the output layer nodes were rounded to the nearest integer
value. The RPROP training routines in MATLAB proved to be the most generally useful of the three
training systems investigated. ANNs trained with GDA training routines often failed to converge to the
desired mean square error. The Levenberg-Marquardt training routines ran out of memory when data
vectors featuring more than 30 bins were processed.

Figure 5. Plot of 2-class Fisher weights and feature average values in 2-class training set.
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The MATLAB feed-forward ANN systems initialized each network with a unique set of weights and
biases, and then proceeded to train the network. This led to some instability in the network evaluation and
in the classifications obtained. If the network was successfully trained to a reasonable mean square error, it
would usually identify all training set vectors without misclassification. There could be misclassifications
in the test/evaluation set. It was found that setting up a committee of ANNs and averaging their output
layers, the stability of the classifications could be improved, and the number of misclassifications could be
reduced. Table 2 lists misclassification frequencies obtained from the 2-class data sets with RPROP-
trained ANNs.



Figure 6. Principal component plot of 3-class training set, raw data.
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Figure 7. Principal components plot of 3-class training set with Fisher weights applied.
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Table 2. Misclassification frequencies of selected ANN classifiers.

Data Set Single Network 5-Network 5-Network 5-Network
Classifiers, Raw Committee Committee Committee
Data Classifiers, Raw Classifiers, Fisher Classifiers, Fisher

Data Weighted Data Weights > 3.0
0.140 0.007 0.005 0.070200-bin

100-bin 0.005 0.014 0.003 0.035

50-in 0.021 0.003 0.005 0.056

25-bin 0.520 0.012 0.012 0.050

Radial basis function networks have been constructed to process the 2-class data set. The results of the
radial basis function network classifications have been given in more detail in a separate proceeding.

A training set was constructed from the 25-bin, 3-class spectral set. A principal component plot of this raw
data set is shown in Figure 6. A principal component plot of the Fisher weighted data set is shown in
Figure 7. KNN results from the raw training set indicate 22 total misclassifications from the raw 3-class
training set. These misclassifications include 3 misclassifications of class 1 compounds as class2, and three
misclassifications of class 1 compounds as class 3. These are potentially serious failures since warnings are
particularly necessary from class I compounds. Additionally, there were 6 misclassifications of class 2
compounds as class 1, in effect false alarms, plus 2 misclassifications of class 2 compounds as class 3.
There were 7 misclassifications of class 3 vectors as class 1, in effect false alarms again, and one false
classification of a class 3 compound as class 2. Neural network classification testing of the 3-class data
set has not been completed. ANN committees trained by the RPROP method classify the 3-class training
set without error.

Discussion

This study required the collection of spectra from a diversity of sources. Prior to their use the spectra had
to be translated into common digital formats to permit their mutual use. A number of the spectra obtained
exhibited serious artifacts produced during collection, and these artifacts had to be removed or corrected
prior to use. Many of the artifacts found in the spectra were outside the frequency range used here, so that
they were eliminated when the spectra were trimmed. Other artifacts such as baseline height were
corrected in the normalizing of the spectra. No duplicate pesticide spectra were available, and very few
duplicates were obtained for the nerve agent, precursor, and hydrolysis product spectra. Thus, testing the
classifications with authentic duplicate spectra was not practical.

The k-nearest neighbor algorithm proved to be simple to implement and it provided a stable classifier to use
while investigating the effects of feature selection and other preprocessing techniques. The KNN classifier
was relatively insensitive to the width of the binning in the preparation of the data vectors, even when the
bin width grew to 74 cml. This is in agreement with the finding by Griffiths that gas phase Fourier
transform infrared spectra remained useful for quantitation and deconvolution procedures even when taken
with resolutions as broad as 50 cm'. 2' Other workers have also reported that useful information remains in
spectra acquired with resolutions as low as 16 cm'-.22

Figure 5a indicates spectral regions with high Fisher weights between classes 1 and 2, and thus the spectral
regions which are likely to be of use in descriminating between organophosphorus pesticides and the
neurotoxins banned by the CWC, or their related precursors and hydrolysis products. Figure 5b shows the
pattern of intensities within classes 1 and 2. Comparison of the two plots indicates that the most valuable
spectral regions for the purposes of discrimination may not be the regions providing the most sensitive
limits of detection for the compounds.

The ANN classifiers, trained with the RPROP technique appear to be a useful improvement over the KNN
classifier from the standpoint of accurate discriminations. However, the numerical instability introduced by
the random initialization of the network is troublesome. The use of a committee ANN approach improves
the accuracy of the ANN further and it partially stabilizes the classifications.
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